Marke	REINNICKEL				
Werkstoff	2.4060				
Kurzzeichen	Ni 99,6				
Chemische Zusammensetzung (Massenanteile) in %					
Ni ≥ 99,6					

Merkmale und Anwendungshinweise

REINNICKEL zeichnet sich besonders durch sehr hohe Oxidationsund Korrosionsbeständigkeit aus. Der spezifische Widerstand ist noch niedriger als der spezifische Widerstand von NICKEL 99,2, während der Temperaturkoeffizient höher ist. Die möglichen Anwendungsgebiete sind vielfältig. Drähte aus REINNICKEL werden hauptsächlich für die Herstellung von Anschlüssen für Heizelemente sowie für Heizspiralen in Zündkerzen verwendet. REINNICKEL ist bis ca. +350 °C magnetisch. Die höchste Anwendungstemperatur an Luft beträgt +700 °C.

Lieferart

REINNICKEL liefern wir in Form von Drähten im Abmessungsbereich von 0,05 bis 5,00 mm Ø in blanker oder lackierter Ausführung.

Elektrischer Widerstand in weichgeglühtem Zustand

Temperaturkoeffizient des elektrischen Widerstands zwischen 0 °C und +100 °C	Spezifischer elektrischer Widerstand in: $\mu\Omega$ x cm (Zeile 1) und Ω /CMF (Zeile 2) Richtwerte +20 °C						
10 ⁻⁶ /K	Toleranz ±10 %	+100 °C	+200 °C	+300 °C	+400 °C	+500 °C	
+5.300 bis +6.400	8	12	18	25	32	36	
	48	72	108	150	192	217	

Physikalische Eigenschaften (Richtwerte)

Dichte bei 4		Schmelzpunkt	Spezifische Wärme bei +20 °C	Wärmeleitfähig- keit bei +20°C	Mittlerer linearer Wärme zwischen +20°C und	C	Thermokraft gegen Kupfer bei +20°C
	•••••••••••••••••••••••••••••••••••••••	***************************************	***************************************	***************************************	+100 °C	+400 °C	
g/cm³	lb/cub in	°C	J/g K	W/m K	10 ⁻⁶ /K	10 ⁻⁶ /K	μV/K
8,90	0,32	+1.440	0,47	69,00	13,00	14,00	-23,00

Festigkeitseigenschaften bei +20 °C in weichgeglühtem Zustand

Zugfestigkeit	⁽²⁾	Bruchdehnung ($L_0 = 100 \text{ mm}$) % bei Nenndurchmesser in mm				
MPa	psi	0,020 bis 0,063	> 0,063 bis 0,125	> 0,125 bis 0,50	> 0,50 bis 1,00	>1,00
450	65.300	≈ 10	≈ 15	≈ 18	≥ 20	≥ 25

Hinweis // REINNICKEL ist als Widerstandslegierung nicht genormt. Daher wurde auf die Angabe der Widerstandswerte verzichtet. Die Gewichte entsprechen denen von Drähten aus ISOTAN® gleichen Durchmessers.

Verarbeitungshinweise // REINNICKEL lässt sich leicht verarbeiten. Die Legierung kann ohne Schwierigkeiten weich- und hartgelötet werden; alle bekannten Schweißverfahren sind anwendbar.