Marke	NICKEL 99,2				
Werkstoff	2.4066				
Kurzzeichen	Ni 99,2				
Chemische Zusammensetzung (Massenanteile) in %					
Ni ≥ 99,2					

Merkmale und Anwendungshinweise

NICKEL 99,2 zeichnet sich besonders durch sehr hohe Oxidations- und Korrosionsbeständigkeit, einen relativ niedrigen spezifischen Widerstand und einen sehr hohen Temperaturkoeffizienten des elektrischen Widerstands aus. Dieses Material eignet sich für verschiedene Anwendungsbereiche, beispielsweise für die Herstellung von Anschlüssen für Heizelemente. NICKEL 99,2 ist bis ca. +360 °C magnetisch. Die höchste Anwendungstemperatur an Luft beträgt +700 °C.

Lieferart

NICKEL 99,2 wird in Form von Drähten im Abmessungsbereich von 0,05 bis 5,00 mm Ø in blanker oder lackierter Ausführung geliefert.

Elektrischer Widerstand in weichgeglühtem Zustand

+4.700 bis +5.800	54	78	114	26 156	199	229	
0 °C und +100 °C 10-6/K	+20 °C Toleranz ±10 %	+100 °C	+200 °C	+300 °C	+400 °C	+500 °C	
Temperaturkoeffizient des elektrischen Widerstands zwischen	Spezifischer elektrischer Widerstand in: $\mu\Omega$ x cm (Zeile 1) und Ω /CMF (Zeile 2) Richtwerte						

Physikalische Eigenschaften (Richtwerte)

Dichte bei +20		Schmelzpunkt	Spezifische Wärme bei +20 °C	Wärmeleitfähig- keit ¹⁾ bei +20 °C	Mittlerer linearer Wärmeausdehnungskoeffizient zwischen +20 °C und		Thermokraft gegen Kupfer bei +20°C
					+100 °C	+400 °C	
g/cm³ l	lb/cub in	°C	J/g K	W/m K	10 ⁻⁶ /K	10 ⁻⁶ /K	μV/K
8,90 (0,32	+1.440	0,47	69,00	13,00	14,00	-23,00

Festigkeitseigenschaften bei +20°C in weichgeglühtem Zustand

450	65.250	≈ 10	≈ 15	≈ 18	≥ 20	≥ 25
MPa	psi	0,020 bis 0,063	> 0,063 bis 0,125	> 0,125 bis 0,50	> 0,50 bis 1,00	> 1,00
Zugfestigke	it ²⁾	Bruchdehnung ($L_0 = 100 \text{ mm}$) % bei Nenndurchmesser in mm				

Hinweis // NICKEL 99,2 ist als Widerstandslegierung nicht genormt. Daher wurde auf die Angabe der Meterwiderstände verzichtet. Die Gewichte entsprechen denen von Drähten aus ISOTAN® gleichen Durchmessers.

Verarbeitungshinweise // NICKEL 99,2 lässt sich leicht verarbeiten. Die Legierung kann ohne Schwierigkeiten weich- und hartgelötet werden; alle bekannten Schweißverfahren sind anwendbar.