Marke	ISATHERM® MINUS¹)			
Werkstoff	2.4122			
Kurzzeichen	KN / KNX			
1	e Zusammensetzung (Massenanteile) in % rte der Legierungselemente			
Ni Rest	Mn Al Si 5			

Merkmale und Anwendungshinweise

ISATHERM® MINUS wird als negativer Schenkel des Thermoelementes K eingesetzt. In der Version für Thermoleitungen wird ISATHERM® MINUS für KNX verwendet. Den genormten Temperaturbereich der verschiedenen Einsatzmöglichkeiten von ISATHERM® MINUS entnehmen Sie bitte den Tabellen in der Begriffserklärung. Siehe auch "Besondere Hinweise zur Legierung".

Lieferart

ISATHERM® MINUS (KN und KNX) wird in Form von Drähten im Abmessungsbereich von 0,03 bis 10,00 mm Ø in blanker Ausführung geliefert. Lackierte Drähte liefern wir von 0,03 bis 1,50 mm Ø. Ebenso kann ISATHERM® MINUS in Form von Litzen, Bändern, Flachdrähten und Stäben geliefert werden. Abmessungsbereiche können bei uns erfragt werden. Die Abmessungen 0,81 und 1,29 mm Ø in der Ausführung KNX sind in aller Regel ab Lager verfügbar.

Thermoelektrische³⁾ und elektrische Werte in weichgeglühtem Zustand

gegen Cu/NIST 175 bei +100 °C / mV ⁴⁾	bei +100 °C / mV	bei +1.000 °C / mV	bei +20 °C
gegen Cu/NIST 175	Thermospannung gegen Pt67/NIST 175	Thermospannung gegen Pt67/NIST 175	Spez. Widerstand $\mu\Omega$ x cm

Physikalische Eigenschaften (Richtwerte)

8,60	+1.400	0,52	30,00	16,00	ja
g/cm³	°C	J/g K	W/m K	10 ⁻⁶ /K	
Dichte bei +20 °C	Schmelz- temperatur	Spezifische Wärme bei +20 °C	Wärmeleitfähig- keit bei +20 °C	Mittlerer linearer Wärmeausdehnungs- koeffizient zwischen +20 °C und +100 °C	Magnetisch bei Raumtemperatur

Mechanische Werte bei +20 °C in verschiedenen Zuständen (Richtwerte)5)

	Zugfestigkeit N/mm²	Dehnung %	Härte HV10
hart	> 1,050	<2	> 300
weich	600	35	100

Verarbeitungshinweise // ISATHERM® MINUS lässt sich hartlöten und mit allen bekannten Verfahren schweißen. Dagegen lässt sich die Legierung nur bedingt weichlöten. Bitte sprechen Sie uns hierzu an.

Besondere Hinweise zur Legierung // ISATHERM® MINUS reagiert bei höheren Temperaturen korrosiv auf Schwefel. Hierdurch kann sich die Thermospannung dramatisch ändern. Ebenso versprödet das Material unter dem Einfluss von schwefelhaltigen Atmosphären.

¹⁾ ISATHERM® MINUS ist ein eingetragenes Warenzeichen der Isabellenhütte Heusler GmbH & Co. KG, bekannt auch als ALUMEL²¹ oder NiAlCo.

²⁾ ALUMEL® ist ein eingetragenes Warenzeichen der Concept Alloys, L.L.C.

³⁾ Die genauen Thermospannungen können mit Hilfe einer EMF-Berechnungssoftware auf unserer Homepage berechnet werden.

⁴⁾ Vergleichsstelle bei 0 °C.

⁵⁾ Die mechanischen Werte sind stark abmessungsabhängig. Die hier angegebenen Werte beziehen sich auf Draht mit 1,0 mm Durchmesser.